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Problem 2.28

a. The steps in finding the Fourier transform for (i) are as follows:

TM(E) — sinc(f)
T (t) expljdmt] — sine(f—2)
TH(t—1)exp[jdn (t—1)] — sinc(f - 2) exp (—j27f)

The steps in finding the Fourier transform for (ii) are as follows:

() — sinc(f)
T (t) expljdnt] — sine(f—2)
T(t+1)exp[jdn (t+1)] — sine(f —2)exp (j271)

b. The steps in finding the Fourier transform for (i) are as follows:

() — sine(f)
T(E—1) «— sinc(f)exp(—j27f)
TM(t—1)expljan (t—1)] = TI(t—1)exp(jint)
e sine ( — 2) exp |32 ( — 2)] = sine (f — 2) exp (~327f)
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which follows because exp(+jn27) = 1 where n is an integer. The steps in finding the
Fourier transform for (ii) are as follows:

M) — sinc(f)
T(E+1) — sinc(f)exp (j2nf)
M+ explidn(t+1)] = T(t+1)exp(jdnt)
— sine (f — 2) exp[j2 (f — 2)] = sine (f — 2) exp (j2rf)
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Problem 2.46
Fourier transform both sides of the differential equation using the differentiation theorem
of Fourier transforms to get

[j27f +a]Y () = [j270F + X (f)
‘Therefore, the frequency response function is

Y(f) _ c+42mof

7= X(f) ~ a+jorf

‘The amplitude response function is

e + (2rb5)?
a2 + (271)?

|2 (5=

and the phase response is

et (20 _ g (22
arg[H ()] = tan (:) tan (n)
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Problem 2.54

‘The energy spectral density of the output is

G, (== @P X (1P

where
2 _ 25
HOF = oy
1
X = gy GO =XOP =5
Hence

2%

= [q + (2,:])’] [15 + (zn/)’]

Plots of the input and output energy spectral densities are left to the student.
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Problem 2.58

a. The frequency response function corresponding to this impulse response is

Sl )

5+iF

The group delay is

T (f) =

2%+ (21f)°

The phase delay is
i (2
_6i(f) _tam (%

arf o f

Tn ()=
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b. The frequency response function corresponding to this impulse response is

5 2
m(f) = 3+j2af  5+jenf
_ 5(5+42nf) —2(3+ j27f)
T (B+52nf) (5 +j2rf)
19 + jomf
15— (2nf)2 + ji6nf

/361 + (671) exp [, tan~! (J)]

\/[15 - (27rf)’]’ +(167f) exp [_7 tan-!

)l

Therefore
o (6nf\ _ . i 16nf
O2(f) = tan ( 19 ) fan ( 5—(27rf)’)

The group delay is

__1a s (1978
() = 55 = ‘(157(27@’)]
L (&)
1 e
-9 . 16215 (257?167 F1=2(251)25)]
\ w(32E5) is-@=A]
_ ,L! 960 167 [15+ (2n7)"] !
P lasl+(w)’ [15’(7"/)Z]Z+(lﬁ"f)zj
57 8 [15+ (2rp)]

61+ (671)° o +34(2nf)7 + (2nf)*

The phase delay is

Coatp)_ o () e ()

T-(2e7)

L) =57 i

The group and phase delays for (a) and (b) are shown in Fig. 2.9.
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Problem 2.69
For bandpass sampling and recovery, all but (b) and (e) will work theoretically, although an
ideal filter with bandwidth exactly equal to the unsampled signal bandwidth is necessary.
For lowpass sampling and recovery, only (f) will work.
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Problem 2.70
Use trig identities to rewrite the signal as a sum of sinusoids:

2(t) = 10cos(6007t) |:%(1+ms(480mrt)):|

5cos (6007t) + 2.5 cos (42007t) + 2.5 cos (54007t)

‘The lowpass recovery filter can cut off in the range 2.7+ kHz to 3.3~ kHz where the super-
script + means just above and the superscript — means just below. The lower of these is
the highest frequency of z (¢) and the larger is equal to the sampling frequency minus the
highest frequency of z (¢).
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Problem 2.2
By noting the amplitudes and phases of the various frequency components from the plots,
the result is

2(t) = 4eIOTER/) | gomiEnten/D) | poitintor/s) | pgmilsnt=x/s)
8cos (87t +7/2) + 4 cos (47t — 7/4)
—8sin (8t) + 4 cos (dnt — 7/4)
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Problem 2.8

a. The result is

(t) = cos (67t — 7/2)+2cos (107t) = Re (&/F-7/2)) +Re (26/1°%) = Re [e'(‘”“*"/’l + 2:1"’“]

b. The result is

o L) Lot o
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c. The single-sided amplitude spectrum consists of lines of height 1 and 2 at frequencies
of 3and 5 Hz, respectively. The single-sided phase spectrum consists of a line of height
—7/2 at frequency 3 Hz. The double-sided amplitude spectrum consists of lines of
height 1, 1/2,1/2, and 1 at frequencies of —5, —3, 3, and 5 Hz, respectively. The
double-sided phase spectrum consists of lines of height /2 and —/2 at frequencies
of —3 and 3 Hz, respectively.
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Problem 2.20

a. The integral for Y, is

n
v,=L / y@yemrtar= L [t tg) eimtar, wy=2msy
T ) o

— to, which results in

b. Note that

] emints _ x, ~itmfute

y(t) = Acoswgt = Asin (wot +7/2) = Asin [uwg (¢ + 7/2wp)]
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Thus, to in the theorem proved in part (a) here is —7/2wo. By Euler’s theorem, a sine wave
n be expressed as

Its Fourier coefficients are therefore Xj = ; and X_; = —g;. According to the theorem
‘proved in part (a), we multiply these by the factor

mmrte _ gminn(o/20)  gine/2
For n =1, we obtain
y=te2=l
2 2
For n = —1, we obtain
1
2

which gives the Fourier series representation of a cosine wave as

v =

1
£t 4 St — cosunt

‘We could have written down this Fourier representation directly by using Euler’s theorem.
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Problem 2.22

a. Use the Fourier series of a square wave (specialize the Fourier series of a pulse train)
with A =1and ¢ =0 to obtain the series

_A(p_1,1o1,
s 57

Multiply both sides by J to get the series in the problem statement. Hence, the sum is %

b. Use the Fourier series of a triangular wave as given in Table 2.1 with A=1and ¢t =0
t0 obtain the series

4 4 4444
2572 T on? T Al @l on? ' 25m7

Multiply both sides by Z to get the series in given in the problem. Hence, its sum is 2




